FDG- PET Imaging in Neurodegenerative Brain Diseases

نویسندگان

  • L. K. Teune
  • A. L. Bartels
  • K. L. Leenders
چکیده

Increases and decreases of synaptic activity in the brain are accompanied by proportional changes in capillary perfusion and local glucose consumption. These changes in glucose consumption are the effect of changed activity or density of the afferent nerve terminals in that region. Loss of neurons may result in decreased glucose consumption in distant brain regions by deafferentiation, while also increased regional glucose consumption by increased activation of afferent neurons can occur. The PET tracer [18F]fluorodeoxyglucose (FDG) allows the measurement of glucose consumption. FDG is a glucose analog with physiological aspects almost identical to glucose. It is transported from the blood to the brain by a carrier-mediated diffusion mechanism. FDG and glucose are phosphorylated by hexokinase as the first step of the glycolytic process. FDG differs from glucose in that a hydrogen atom replaced the hydroxyl group at the second carbon atom of the molecule. Glucose is then phosphorylated to glucose-6PO4, and continues along the glycolytic pathway for energy production. However, FDG is phosphorylated to FDG-6-PO4, which is not a substrate for further metabolism and trapped in tissues. As glucose is the only source of energy for the brain it reflects the neuronal integrity of underlying brain pathology. Since FDG is a competitive substrate with glucose for both transport and phosphorylation, it is important for tracer uptake to avoid high blood glucose levels during an FDG-PET scan in subjects with diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The diagnostic difference between 18F- FDG PET and 99mTc-HMPAO SPECT perfusion imaging in assessment of Alzheimer's disease

Introduction:Brain imaging with F-18 fluorodeoxyglucose (18F-FDG) positron ‎emission tomography or Tc-99m hexamethylpropyleneamine oxime (‎99mTc-HMPAO) SPECT is widely used for the evaluation of Alzheimer's ‎dementia (AD); we aim to assess superiority of one method over the ‎other. Methods: Twenty four patients with clinical diagnosi...

متن کامل

18F-FDG PET/CT usefulness vs Tc99m-Tetrofosmin in the assessment of malignant brain gliomas: Report of two cases

Gliomas account for almost 80% of primary malignant brain tumors in adults. Magnetic Resonance imaging (MRI) is still the gold standard for diagnosis of brain tumors and brain 99mTc-tetrofosmin Single Photon Emission Computed Tomography (99mTc-tetrofosmin-SPECT) has been established as a useful tool for their evaluation. Fluorine-18–2-fluoro-2-deoxy-d-glucose positron emi...

متن کامل

18FDG PET/CT in pulmonary carcinosarcoma and brain metastasis

 Carcinosarcoma is a rare type of cancer that is composed of a mixture of sarcomatous and carcinomatous elements. Pulmonary carcinosarcoma has a 25% five-year survival rate with a prognosis poorer than other non-small cell lung carcinomas. Herein, we report a case of pulmonary carcinosarcoma and its 18F-FDG PET/CT findings. A 61-year-old male patient presented with brain symptoms, including hea...

متن کامل

Multimodality imaging of Alzheimer disease and other neurodegenerative dementias.

Neurodegenerative diseases, such as Alzheimer disease, result in cognitive decline and dementia and are a leading cause of mortality in the growing elderly population. These progressive diseases typically have an insidious onset, with overlapping clinical features early in the disease course that make diagnosis challenging. The neurodegenerative diseases are associated with characteristic, alth...

متن کامل

18F-FDG PET/CT in pachygyria during evaluation for seizure disorder

Pachygyria or incomplete lissencephaly is a developmental condition due to abnormal migration of neurons. The association of seizures in this condition warrants investigation like electroencephalogram (EEG) and magnetic resonance imaging (MRI). 18F-flurodeoxyglucose positron emission topography computed topography (18F-FDG PET/CT) has a potential role in commenting of wide...

متن کامل

PET and the multitracer concept in the study of neurodegenerative diseases

The complexity of the pathological reactions of the brain to an aggression caused by an internal or external noxa represents a challenge for molecular imaging. Positron emission tomography (PET) can indicate in vivo, anatomopathological changes involved in the development of different clinical symptoms in patients with neurodegenerative disorders. PET and the multitracer concept can provide inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013